
Repast Simphony Database Outputter Plugin -

Documentation

Sascha Holzhauer, Center for Environmental Systems Research

August 23, 2011

1 Introduction

This documentation version is related to the plugin version 0.90 for Repast
Symphony 2.0.0. The database outputter works analogous to a file outputter
extending log4j’s JDBCAppender. Like the file outputter, the database outputter
is configured via a 2-step wizard reusing/extending the file outputter and JDBC
freezedryer wizards. The code should integrate well into simphony as a plugin.

The performance of writing to a DB compared to a file is addressed by
adding the option to cache a certain number of SQL statements and execute
these at once. This might reduce the additional time to a negligible amount.
The advantage is to directly put data in the database without getting confused
about numerous files somewhere on the hard disk.

Features include:

• Caching of a definable number of outputs before SQL execution

• Uses prepared statements (MySQL)

• Configuration via 2-step wizard

– Auto-completion for URL and driver in database properties wizard
step

– Ability to test MySQL connection

– Choose whether to store login information or to be prompted

• Integrates well in Repast Simphony as plugin folder

• Uses RS parameters to add information

– RUN_ID

– PARAM_SET_ID

• Creates MySQL table if it does not exist

• Run information management

1

1.1 Selection of applied runID

The run information entry is usually made in the dabase at the first loggin, even
if caching is enabled. The run id for that entry is usually indentified during the
outputter’s initialisation during context building (see table). An exception oc-
curs when getCurrentMaxRunId() is called before.

RUN ID (RS) run info table given run id
set yes RUN ID or next valid number
set no RUN ID

not set yes MAX(runID) + 1 in run info
not set no MAX(runID) + 1 in result table

any error 1

2 Installation

Just extract the zip file RsDbOutputter4Rs2.0.0-0.90.zip into your eclipse in-
stallation folder. The result should be a new folder called repast.simphony.data.batch 2.0.0

and repast.simphony.data.db 2.0.0.jar within the plugin folder. Further-
more, the existing file repast.simphony.bin and src 2.0.0/repast.simphony.bin and src.jar

should have been overwritten.
If you use the file repast.simphony.bin and src.jar at other lcoations (it is
required for batch runs) you should exchange these as well.

3 Setting up a Database Outputter Action

A Database outputter action is configured similar to a file outputter action.
After you configured one or more data sets, in the scenario tree, right-click on
“Outputters” and choose “Add DB Outputter”. The wizard’s first step page
(figure 1) appears:

• Data Properties

– Name: Choose an arbitrary name for the outputter action that iten-
tifies the outputter in the sceanrio tree.

– Data Set ID: Use the drop-down menu to choose a previously con-
figured data set.

• Table Columns

– Add run ID: This is important for batch runs. In case it is activated
the plugin adds a column “runID” to each data row. The highest
runID will be queried from the table and increased. In case of a new
table it start with 1.

– Run-Info Table Name: Specify the name of the table that con-
tains run information. This is used to assign unique run IDs. How-
ever, if there is another DB-Outputter used before in a particular run,
the corresponding run-info table name is used. Furthermore, if there
is an earlier call to DefaultDBOutputter.getCurrentMaxRunId(runInfoName,
dbConInfo) that run-info table is used.

2

Figure 1: Wizard Step 1

– Move the columns that shall be stored in DB to the left.

• Data Base Properties

– Table name: Type in the name of the table the data shall be stored
in. NOTE: If the table does not exist, the plugin tries to create a
new table.

• Caching Settings

– Specify the number of outputs that are cached before the data is sent
to the database. This can save an enormous amount of time since a
single database query could be very time consuming. Every object
per tick counts. I.e., if the data set is defined to gather data from
5 agents every second tick, data will be passed to the database after
20 ticks when the number of outputs to cache is 50. Note that the
interval of data storage is defined during the configuration of the data
sets.

The second wizard step (figure 2) deals with database connection properties:

3

Figure 2: Wizard Step 2

• Database Connection Properties

– URL: State the URL of the database you want to connect to, e.g.
jdbc:mysql://mysql:3306/simulations. This text field features
auto completion.

– Driver: Specify the JDBC driver class according to your database,
for instance com.mysql.jdbc.Driver. Make sure that the driver is
available at the classpath. The MySQL Connector-J library contain-
ing the driver may be downloaded from
http://www.mysql.com/downloads/connector/j/. This text field
features auto completion.

• Database User Properties

– User: The username to connect with.

– Password: Specify the password to log on at the database if there
are no security concerns since passwords are stored in clear text in the
outputter deciption XML file within the model configuration folder
(*.rs). If there are concers, uncheck to following box.

– Store Login Details: If it is checked username and password
will be stored in clear text to the configuration file. If the box is

4

http://www.mysql.com/downloads/connector/j/

unchecked, input fields for username and password are disabled. Fur-
thermore, the “Test DB Connection”-Button is diabled since it is not
possible to check the connection without username and password.
However, it is possible to check the box, fill in username and pass-
word, check the connection, and uncheck the box to prevent storing
login data. When no username and password are given, the plugin
prompts for login data when the simulations is initialised. Then, also
a connection test is performed (figure 3).

– Test DB Connection-Button: Press the button to test a con-
nection to the MySQL-Database with given parameters. If the test
fails, a dialog (figure 3) appears and gives the opportunity to correct
the data. If the test passes, the newly entered data is passed to the
second wizard step.

Figure 3: Wizard Step 2 Communication Settings

4 Implementation

4.1 DefaultDBOutputter

DefaultDBOutputter. CachedJdbcAppender extends JDBCAppender and uses
most of the functionality. To enable chaching, DefaultDBOutputter. CachedJdbcAppender

overwrites JDBCAppender#execute() and stores all sql statements into a buffer
until the limit is reached. Furthermore, it adds the column definitions as the first
part of SQL statement. To flush the buffer on close(), DefaultDBOutputter.
CachedJdbcAppender also overwrites JDBCAppender#close() and directly calls
JDBCAppender#execute() to by-pass caching.

Overwriting JDBCAppender#getLogStatement() is used to generate the SQL
peace for every column defined in the DbOutputterDescriptor. CachedJdbcAppender

and also adds the runID if activated.
To ensure all cache is sent to the database, the DbOutputterDescriptor.

CachedJdbcAppender’s close() method is scheduled at the last tick with pri-
ority ScheduleParameters. LAST PRIORITY. Otherwise, close() is not called

5

before the simualtion is reset, and in case the user closes the application without
resetting the cached data is missed.

4.2 Error Handling

The plugin does not throw SQLExceptions in order not to interrupt simulations
because of output errors. Instead, a ERROR-Logging to the Repast Simphony
Message Center is triggered.

4.3 Run Information Handling

Since Repast Simphony 2.0.0, initialisation of data outputters take place not be-
fore the first data is logged. Therefore, calls to DefaultDBOutputter.getCurrentMaxRunId()
before the first data is logged cannot access any information required to connect
to the database. That’s why DefaultDBOutputter.getCurrentMaxRunId(runInfoTable,

dbConInfo) was added.

5 Things to Do

• Adjust dialog dimensions

• Check for column types using DbOutputterDescriptor.CachedJdbcAppender#

doesTableDefinitionExist(String tableName, Map<String, Object>

cols). Since the DataGathererDescriptor does not contain any type in-
formation this is not straight forward.

• Create additional table columns if requiered

• Handle more objects (e.g. arrays) to log

• Check for valid characters in table name.

• Enable to disable data outputter activities.

• Make save against database write processes inbetween (e.g. regarding
runID).

• create date field for run information instead of String

6 Changes

6.1 0.9

• FEATURE: error logging in CustomJDBCAppendergetConnection

• FEATURE: add logging in CustomJDBCAppender’s initialiser (runID)

• FEATURE: add CustomJDBCAppendergetCurrentMaxRunId

• FEATURE: add static CustomJDBCAppendergetCurrentMaxRunId

• FEAUTRE: add labels in wizard step 1

6

• BUGFIX: start with runID = INTEGER.MINV ALUEBUGFIX : addnewoutputterstorunIdCalculationswithFALSE

•• MINOR: rename CustomJDBCAppendergetRunID() to getRunIDStatic()

• MINOR: make CustomJDBCAppendergetConnection(Connection con, DBCon-
nectionInfo dbConInfo) static - MINOR: add CustomJDBCAppendergetRunID()

6.2 0.85

• feature: independed table for run information (integration in Descriptor,
GUI and getRunId())

• feature: allowing runID that are lower than the largerst in table but do
not conflict

• feature: integrating prepared statements (also applies to last revision)

• feature: added DefaultDBOutputter.getCurrentRunID()

• feature: added DefaultDBOutputter.getCurrentMaxRunId(runInfoTable,

dbConInfo) to access the runID before first data loggin.

• bugfix: added runIdCalculations.put(this, new Boolean(false));

(forces runID to check also before output)

• bugfix: incrementing index

• bugfix: get(Object o) > add Integer support (data types for output)

• bugfix: substitute PoolingConenctionSource by simple DriverManager.getConnection

• bugfix: DefaultDBOutputter#doesTableDefinitionExist() > use up-
per case to search for column in table

• bug fix: DefaultDBOutputter.CustomJdbcAppender#doesTableDefinitionExist(String

tableName, List<String> cols) > converting string to lower case be-
fore comparing

• bug fix: DefaultDBOutputter.CustomJdbcAppender#getRunID(DbOutputterDescriptor
descriptor, Connection con)

• minor: adding more debug loggings

• minor: removing getRunID from CustomJDBCAppender#Constructor

• minor: changed PARAMS_ID to PARAM_SET_ID

• minor: added exception management for missing RS parameters

• minor: added exception management for missing run info tablename

• minor: changed runID map

7

6.3 0.81

• Added handling for boolean

• Corrected calculation of runID

• Added separate run information table

• Consider RS parameter RUN_ID as runID (only use it when it exceeds to
last runID in current table)

7 Developer’S Notes

When the DbOutputterDescriptor is altered regarding its fields, old DB Out-
putter definitions might become invalid!

8 Contact

Any suggestions and bug reports are appreciated. Please, send an eMail to
holzhauer@usf.uni-kassel.de.

8

	Introduction
	Selection of applied runID

	Installation
	Setting up a Database Outputter Action
	Implementation
	DefaultDBOutputter
	Error Handling
	Run Information Handling

	Things to Do
	Changes
	0.85
	0.81

	Developer'S Notes
	Contact

